If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+12y-9=0
a = 4; b = 12; c = -9;
Δ = b2-4ac
Δ = 122-4·4·(-9)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{2}}{2*4}=\frac{-12-12\sqrt{2}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{2}}{2*4}=\frac{-12+12\sqrt{2}}{8} $
| 2.5x=-1.75 | | 5+n/7=-2 | | 21x-3=-19x-9 | | 11x+46=5x+4 | | C=(2b+5) | | -5x-4=-7x-6 | | 3(x^2+5x-20)=0 | | 3x+9=5x-18 | | 12x+16=52 | | 8+6x=x+33 | | 79=6b+7 | | 3x(-2)=18 | | 3(x-5)+10=13 | | 14x-13=9x+7 | | 1=123x | | x+3/2=x+1/3 | | 3=5(10x+4)+8 | | 5x+5=2(2x-1) | | 2x+156=46+192 | | x²-4x-6=0 | | -x+9=6x-40 | | 2(3x-5)=3(2x+10) | | 2x-15+2x=360 | | 74-b=53 | | x+(x*0.18)=100 | | 12=f2+ 9 | | 2w-21=w | | -r+24=16 | | x-7-7x=-13 | | 2x+62=5x=38 | | 100-7aa=6 | | 2z–52=z+1 |